Pseudo-Linear Attitude Determination of Spinning Spacecraft
نویسنده
چکیده
This paper presents the overall mathematical model and results from pseudo linear recursive estimators of attitude and rate for a spinning spacecraft. The measurements considered are vector measurements obtained by sun-sensors, fixed head star trackers, horizon sensors, and three axis magnetometers. Two filters are proposed for estimating the attitude as well as the angular rate vector. One filter, called the q-Filter, yields the attitude estimate as a quaternion estimate, and the other filter, called the D-Filter, yields the estimated direction cosine matrix. Because the spacecraft is gyro-less, Euler’s equation of angular motion of rigid bodies is used to enable the estimation of the angular velocity. A simpler Markov model is suggested as a replacement for Euler’s equation in the case where the vector measurements are obtained at high rates relative to the spacecraft angular rate. The performance of the two filters is examined using simulated data.
منابع مشابه
Novel Attitude Control Challenges for an Earth-Observing CubeSat
This paper presents a novel attitude determination and control solution for a three cube nanosatellite performing science operations in low Earth orbit. The spacecraft is tasked with studying the water content of Earth’s upper atmosphere by taking radiometer measurements along the 183 GHz absorption line. The radiometer must be calibrated against the cold of deep space, and this calibration nec...
متن کاملEarth’s Magnetic Field for Spacecraft Attitude Control Applications (TECHNICAL NOTE)
In this paper the earth’s magnetic field is simulated precisely while the intensity and direction of the field are verified with one of the standard references for selected points on the earth and the results are compared with some low-order models. In another simulation, the complete model is compared with a common approximate model. The magnetic field in orbital frame is described and to empl...
متن کاملNumerical Solution of a Generalized Wahba Problem for a Spinning Spacecraft
A numerical solution algorithm has been developed to solve a generalization of Wahba's attitude determination problem to the case of unknown attitude and attitude rate. It provides a robust global solution to nonlinear batch attitude and rate estimation problems for spinning spacecraft. The original Wahba problem seeks the attitude that fits a set of unit-normalized direction vector measurement...
متن کاملRobust Attitude Control of Spacecraft Simulator with External Disturbances
The spacecraft simulator robust control through H∞-based linear matrix inequality (LMI) and robust adaptive method is implemented. The spacecraft attitude control subsystem simulator consists of a platform, an air-bearing and a set of four reaction wheels. This set up provides a free real-time three degree of freedom rotation. Spacecraft simulators are applied in upgrading and checking the c...
متن کاملReview and Analysis of Single-thruster Attitude Control Techniques for Spinning Spacecraft
The attitude dynamics and manoeuvre survey in this paper is performed for a mission scenario involving a penetrator-type spacecraft, a semi-rigid axisymmetric prolate spacecraft spinning around its minor axis of inertia, requested to perform a 90° spin axis reorientation manoeuvre. In contrast to most existing spacecraft only one attitude control torque is available, perpendicular to the spin a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004